Skip to contents

sc_tabulate() extracts the data in the table and turns it into a tidy data.frame. It applies labeling of the data and transforms time variables into a Date format if they satisfy certain 'STATcube' standards.

sc_tabulate(table, ...) is just an alias for table$tabulate(...) and was added so this rather complicated method can have a separate documentation page. It is recommended to use the table$tabulate() syntax

the ... argument decides which measures and/or fields should be included in the output. If no measures are given, all measures are included. The same is true for fields.

Usage

sc_tabulate(
  table,
  ...,
  .list = NULL,
  raw = FALSE,
  parse_time = TRUE,
  recode_zeros = inherits(table, "sc_table"),
  language = NULL,
  sort = FALSE
)

Arguments

table

An object of class sc_data

...

Names of measures and/or fields

.list

allows to define the arguments for ... as a character vector.

raw

If FALSE (the default), apply labeling to the dataset. Otherwise, return codes.

parse_time

Should time variables be converted into a Date format? Ignored if raw is set to TRUE.

recode_zeros

turn zero values into NAs

language

The language to be used for labeling. By default, the dataset language (table$language) is used.

sort

If TRUE, the resulting data will be sorted by all provided field values

Value

a data.frame

Details

Aggregation is done as follows

  • First, all columns that provide a total code via table$total_codes() will be used to filter for column == total_code or column != total_code

  • Then, the remaining data is aggregated using rowsum()

The ellipsis (...) supports partial matching of codes and labels. See Examples

For objects of class sc_table two additional operations are performed.

  • zeros are recoded to NAs

  • rounding is done according to the precision of each measure. Rounding happens after the recoding to NA values

See also

sc_table_class

Examples

############################ OGD Data #######################################

table <- od_table("OGD_veste309_Veste309_1")

# no arguments -> same output as `table$data`
table$tabulate()
#> # A STATcubeR tibble: 72 x 9
#>    Sex       Citizenship `Region (NUTS2)`   `Form of employment`      
#>  * <fct>     <fct>       <fct>              <fct>                     
#>  1 Sum total Total       Total              "Total"                   
#>  2 Sum total Total       Total              "Standard employment "    
#>  3 Sum total Total       Total              "Non-standard employment …
#>  4 Sum total Total       Total              "Non-standard employment:…
#>  5 Sum total Total       Total              "Non-standard employment:…
#>  6 Sum total Total       Total              "Non-standard employment:…
#>  7 Sum total Total       Total              "Non-standard employment:…
#>  8 Sum total Total       AT11 Burgenland    "Total"                   
#>  9 Sum total Total       AT12 Lower Austria "Total"                   
#> 10 Sum total Total       AT13 Vienna        "Total"                   
#> # ℹ 62 more rows
#> # ℹ 5 more variables: `Arithmetic mean` <dbl>, `1st quartile` <dbl>,
#> #   `2nd quartile (median)` <dbl>, `3rd quartile` <dbl>,
#> #   `Number of employees` <dbl>

# provide some fields -> aggregate to keep only these fields
table$tabulate("Sex", "Citizenship")
#> # A STATcubeR tibble: 27 x 7
#>    Sex       Citizenship              `Arithmetic mean` `1st quartile`
#>  * <fct>     <fct>                                <dbl>          <dbl>
#>  1 Sum total "Total"                              266.          181.  
#>  2 Sum total "Austrian"                            18.5          12.4 
#>  3 Sum total "Non-Austrian "                       14.4           9.72
#>  4 Sum total "EU-28/EWR/Switzerland …              15.2          10.0 
#>  5 Sum total "EU-15/EWR before 2004/…              19.6          11.9 
#>  6 Sum total "EU-13 EU Member States…              13.0           9.59
#>  7 Sum total "Former Yugoslavia (wit…              12.8           9.58
#>  8 Sum total "Turkey"                              12.2           9.35
#>  9 Sum total "Other"                               13.8           9.07
#> 10 Male      "Total"                              290.          195.  
#> # ℹ 17 more rows
#> # ℹ 3 more variables: `2nd quartile (median)` <dbl>,
#> #   `3rd quartile` <dbl>, `Number of employees` <dbl>

# provide some measures -> drop all other measures from the output
table$tabulate("Arithmetic mean")
#> # A STATcubeR tibble: 72 x 5
#>    Sex       Citizenship `Region (NUTS2)`   `Form of employment`      
#>  * <fct>     <fct>       <fct>              <fct>                     
#>  1 Sum total Total       Total              "Total"                   
#>  2 Sum total Total       Total              "Standard employment "    
#>  3 Sum total Total       Total              "Non-standard employment …
#>  4 Sum total Total       Total              "Non-standard employment:…
#>  5 Sum total Total       Total              "Non-standard employment:…
#>  6 Sum total Total       Total              "Non-standard employment:…
#>  7 Sum total Total       Total              "Non-standard employment:…
#>  8 Sum total Total       AT11 Burgenland    "Total"                   
#>  9 Sum total Total       AT12 Lower Austria "Total"                   
#> 10 Sum total Total       AT13 Vienna        "Total"                   
#> # ℹ 62 more rows
#> # ℹ 1 more variable: `Arithmetic mean` <dbl>

# mixture of measures and fields  -> keep exactly those columns
table$tabulate("Sex", "Arithmetic mean")
#> # A STATcubeR tibble: 3 x 2
#>   Sex       `Arithmetic mean`
#> * <fct>                 <dbl>
#> 1 Sum total              385.
#> 2 Male                   418.
#> 3 Female                 342.

## define total codes
table$total_codes(
  `C-A11-0` = "A11-1",
  `C-STAATS-0` = "STAATS-9",
  `C-VEBDL-0` = "VEBDL-10",
  `C-BESCHV-0` = "BESCHV-1"
)

## alternatively, use partial matching to define totals
table$total_codes(
  Sex = "Sum total",
  Citizenship = "Total",
  Region = "Total",
  `Form of employment` = "Total"
)

# filter for totals in `Region (NUTS2)` and `Form of employment`. Drop totals
# in `Sex` and `Citizenship`.
table$tabulate("Sex", "Citizenship")
#> # A STATcubeR tibble: 16 x 7
#>    Sex    Citizenship                 `Arithmetic mean` `1st quartile`
#>  * <fct>  <fct>                                   <dbl>          <dbl>
#>  1 Male   "Austrian"                               20.4          13.8 
#>  2 Male   "Non-Austrian "                          15.3          10.6 
#>  3 Male   "EU-28/EWR/Switzerland (wi…              16.0          10.9 
#>  4 Male   "EU-15/EWR before 2004/Swi…              21.2          12.6 
#>  5 Male   "EU-13 EU Member States af…              13.6          10.3 
#>  6 Male   "Former Yugoslavia (withou…              14.1          11.2 
#>  7 Male   "Turkey"                                 13.3          10.4 
#>  8 Male   "Other"                                  14.0           9.07
#>  9 Female "Austrian"                               15.9          11.1 
#> 10 Female "Non-Austrian "                          13.0           9.19
#> 11 Female "EU-28/EWR/Switzerland (wi…              13.7           9.38
#> 12 Female "EU-15/EWR before 2004/Swi…              17.1          11.0 
#> 13 Female "EU-13 EU Member States af…              12.1           9.06
#> 14 Female "Former Yugoslavia (withou…              10.9           9   
#> 15 Female "Turkey"                                 10.3           8.68
#> 16 Female "Other"                                  13.3           9.07
#> # ℹ 3 more variables: `2nd quartile (median)` <dbl>,
#> #   `3rd quartile` <dbl>, `Number of employees` <dbl>

## switch language
table$language <- "de"

## `...` matches for codes and labels
table$tabulate("C-A11-0", "Staats", "2. Quartil (Median)")
#> # A STATcubeR tibble: 16 x 3
#>    Geschlecht Staatsangehörigkeit                `2. Quartil (Median)`
#>  * <fct>      <fct>                                              <dbl>
#>  1 männlich   "Österreich"                                       17.4 
#>  2 männlich   "Nicht-Österreich"                                 13.2 
#>  3 männlich   "EU-28/EWR/Schweiz (ohne Österrei…                 13.5 
#>  4 männlich   "EU-15/EWR vor 2004/Schweiz "                      16.7 
#>  5 männlich   "EU-13 Beitrittsstaaten ab 2004"                   12.7 
#>  6 männlich   "ehemaliges Jugoslawien (außerhal…                 13.6 
#>  7 männlich   "Türkei"                                           12.8 
#>  8 männlich   "Andere"                                           11.2 
#>  9 weiblich   "Österreich"                                       14.0 
#> 10 weiblich   "Nicht-Österreich"                                 10.6 
#> 11 weiblich   "EU-28/EWR/Schweiz (ohne Österrei…                 11.3 
#> 12 weiblich   "EU-15/EWR vor 2004/Schweiz "                      14.7 
#> 13 weiblich   "EU-13 Beitrittsstaaten ab 2004"                   10.3 
#> 14 weiblich   "ehemaliges Jugoslawien (außerhal…                  9.78
#> 15 weiblich   "Türkei"                                            9.51
#> 16 weiblich   "Andere"                                           10.6 

## Keep totals in the output by removing total codes
table$tabulate("C-A11-0")      # -> 2 rows: "male" "female"
#> # A STATcubeR tibble: 2 x 6
#>   Geschlecht Arithmetisches Mitte…¹ `1. Quartil` `2. Quartil (Median)`
#> * <fct>                       <dbl>        <dbl>                 <dbl>
#> 1 männlich                     19.2         12.8                  16.3
#> 2 weiblich                     15.3         10.4                  13.4
#> # ℹ abbreviated name: ¹​`Arithmetisches Mittel`
#> # ℹ 2 more variables: `3. Quartil` <dbl>,
#> #   `Zahl d unselbst Beschäftigten` <dbl>
table$total_codes(`C-A11-0` = NA)
table$tabulate("C-A11-0")      # -> 3 rows: "total", "male", "female"
#> # A STATcubeR tibble: 3 x 6
#>   Geschlecht Arithmetisches Mitte…¹ `1. Quartil` `2. Quartil (Median)`
#> * <fct>                       <dbl>        <dbl>                 <dbl>
#> 1 insgesamt                    17.6         11.6                  15.1
#> 2 männlich                     19.2         12.8                  16.3
#> 3 weiblich                     15.3         10.4                  13.4
#> # ℹ abbreviated name: ¹​`Arithmetisches Mittel`
#> # ℹ 2 more variables: `3. Quartil` <dbl>,
#> #   `Zahl d unselbst Beschäftigten` <dbl>

## table$tabulate(...) is an alias for sc_tabulate(table, ...)
sc_tabulate(table, "C-A11-0")
#> # A STATcubeR tibble: 3 x 6
#>   Geschlecht Arithmetisches Mitte…¹ `1. Quartil` `2. Quartil (Median)`
#> * <fct>                       <dbl>        <dbl>                 <dbl>
#> 1 insgesamt                    17.6         11.6                  15.1
#> 2 männlich                     19.2         12.8                  16.3
#> 3 weiblich                     15.3         10.4                  13.4
#> # ℹ abbreviated name: ¹​`Arithmetisches Mittel`
#> # ℹ 2 more variables: `3. Quartil` <dbl>,
#> #   `Zahl d unselbst Beschäftigten` <dbl>

######################## 'STATcube' REST API ################################

table_tourism <- sc_table(sc_example("accomodation.json"), "de")

table_tourism$tabulate()
#> # A STATcubeR tibble: 2,691 x 5
#>    `Saison/Tourismusmonat` Herkunftsland Beherbergungsbetrieb     
#>  * <date>                  <fct>         <fct>                    
#>  1 1999-11-01              Österreich    Hotels gesamt            
#>  2 1999-11-01              Österreich    Ferienwohnungen insgesamt
#>  3 1999-11-01              Österreich    Sonstige                 
#>  4 1999-11-01              Deutschland   Hotels gesamt            
#>  5 1999-11-01              Deutschland   Ferienwohnungen insgesamt
#>  6 1999-11-01              Deutschland   Sonstige                 
#>  7 1999-11-01              andere Länder Hotels gesamt            
#>  8 1999-11-01              andere Länder Ferienwohnungen insgesamt
#>  9 1999-11-01              andere Länder Sonstige                 
#> 10 1999-12-01              Österreich    Hotels gesamt            
#> # ℹ 2,681 more rows
#> # ℹ 2 more variables: Übernachtungen <dbl>, Ankünfte <dbl>
table_tourism$tabulate("Saison/Tourismusmonat")
#> # A STATcubeR tibble: 299 x 3
#>    `Saison/Tourismusmonat` Übernachtungen Ankünfte
#>  * <date>                           <dbl>    <dbl>
#>  1 1999-11-01                     2646717   961334
#>  2 1999-12-01                     7373034  1771530
#>  3 2000-01-01                    12437812  2462258
#>  4 2000-02-01                    13480000  2532404
#>  5 2000-03-01                    11340174  2273436
#>  6 2000-04-01                     6138146  1666777
#>  7 2000-05-01                     5150347  1673232
#>  8 2000-06-01                     8908931  2438518
#>  9 2000-07-01                    14618147  3118576
#> 10 2000-08-01                    16498662  3248084
#> # ℹ 289 more rows
table_tourism$tabulate("Saison/Tourismusmonat", "Ankünfte")
#> # A STATcubeR tibble: 299 x 2
#>    `Saison/Tourismusmonat` Ankünfte
#>  * <date>                     <dbl>
#>  1 1999-11-01                961334
#>  2 1999-12-01               1771530
#>  3 2000-01-01               2462258
#>  4 2000-02-01               2532404
#>  5 2000-03-01               2273436
#>  6 2000-04-01               1666777
#>  7 2000-05-01               1673232
#>  8 2000-06-01               2438518
#>  9 2000-07-01               3118576
#> 10 2000-08-01               3248084
#> # ℹ 289 more rows
table_tourism$tabulate("Ankünfte")
#> # A STATcubeR tibble: 2,691 x 4
#>    `Saison/Tourismusmonat` Herkunftsland Beherbergungsbetrieb Ankünfte
#>  * <date>                  <fct>         <fct>                   <dbl>
#>  1 1999-11-01              Österreich    Hotels gesamt          371215
#>  2 1999-11-01              Österreich    Ferienwohnungen ins…     5365
#>  3 1999-11-01              Österreich    Sonstige                67272
#>  4 1999-11-01              Deutschland   Hotels gesamt          223856
#>  5 1999-11-01              Deutschland   Ferienwohnungen ins…    13095
#>  6 1999-11-01              Deutschland   Sonstige                24262
#>  7 1999-11-01              andere Länder Hotels gesamt          235343
#>  8 1999-11-01              andere Länder Ferienwohnungen ins…     6493
#>  9 1999-11-01              andere Länder Sonstige                14433
#> 10 1999-12-01              Österreich    Hotels gesamt          346040
#> # ℹ 2,681 more rows