Skip to contents
##  Key could be verified via a test request
##  The provided key will be available for this R session
##  Add `STATCUBE_KEY_EXT = XXXX` to "~/.Renviron" to set the key
##   persistently. Replace `XXXX` with your key

At the time of writing this article, there are 315 datasets that are assumed to be compatible with od_table(). This list is not updated regularly, so to get the most recent list, a call to od_list() will return the current list.

Interactive overview

Since some of the metadata contained in the OGD JSON files is only available in German, the following overview uses German labels. Click on the individual table cells to get more information.

CLI usage

To get a simplified version of this summary, use the od_list() function. It uses webscraping techniques to get dataset ids and German labels based on the contents of https://data.statistik.gv.at/web/catalog.jsp.

all_datasets <- od_list()
all_datasets
# A tibble: 384 × 3
   category      id                               label                         
   <chr>         <chr>                            <chr>                         
 1 Neueste Daten OGD_kjeunt08mmde_KJE08_MDE_U_M_2 Konjunkturstatistik im Produz…
 2 Neueste Daten OGD_kjeunt08mmde_KJE08_MDE_U_M_1 Konjunkturstatistik im Produz…
 3 Neueste Daten OGD_kjebet08mmde_KJE08_MDE_B_M_1 Konjunkturstatistik im Produz…
 4 Neueste Daten OGD_kjeunt08m_KJE08_U_M_1        Konjunkturstatistik im Produz…
 5 Neueste Daten OGD_kjebet08m_KJE08_B_M_1        Konjunkturstatistik im Produz…
 6 Neueste Daten OGD_zlf_komm_ZLF_KOM_1           Kommerzielle Zivilluftfahrt   
 7 Neueste Daten OGD_konjidxdl21_KJIX_DL_21_1     Konjunkturindizes Dienstleist…
 8 Neueste Daten OGD_konjidxhan21_KJIX_H_21_1     Konjunkturindizes Handel Basi…
 9 Neueste Daten OGD_gvk_ware_2010_GVK_W10_1      Transportaufkommen und Transp…
10 Neueste Daten OGD_gvk_fahrt_2010_GVK_F10_1     Fahrten im Straßengüterverkeh…
# ℹ 374 more rows

Overview via json

If you identify an interesting dataset, consider downloading the metadata json to get more details. The json contains links to further metadata including a link to data.statistik.gv.at.

(id <- all_datasets$id[2])
#> [1] "OGD_kjeunt08mmde_KJE08_MDE_U_M_1"
json <- od_json(id)
json
#> Konjunkturstatistik im Produzierenden Bereich ab 2008 – monatliche
#> Unternehmensdaten (Grundgesamtheit)
#> 
#> Measures: Unternehmen, Beschäftigte - insgesamt, Unselbständig Beschäftigte
#>   - insgesamt, Brutto-Verdienste insgesamt in 1.000 EUR, Umsatz in 1.000 EUR
#>   - insgesamt, Umsatz in 1.000 EUR - Inland
#> Fields: Berichtsmonat, ÖNACE 2008 (Ebene +4)
#> Updated: 2024-11-29 10:28:31
#> Tags: Konjunkturstatistik, Produzierenden Bereich, monatliche
#>   Unternehmensdaten
#> Categories: Wirtschaft und Tourismus

This output is generated from OGD_kjeunt08mmde_KJE08_MDE_U_M_1.json and shows a summary of the available metadata. Other parts of the metadata can be extracted with $ using the keys from the json specification.

json$extras$update_frequency
#> [1] "monatlich"

Showcase

The population dataset measures the Austrian population for 2117 different regions.

od_table("OGD_bevstandjbab2002_BevStand_2020")$tabulate()
# A STATcubeR tibble: 392,144 x 5
   `Time section` Sex   Commune (aggregation by p…¹ `Age in single years` Number
 * <date>         <fct> <fct>                       <fct>                  <int>
 1 2020-01-01     male  Eisenstadt <10101>          under 1 year old          77
 2 2020-01-01     male  Eisenstadt <10101>          1 year old                75
 3 2020-01-01     male  Eisenstadt <10101>          2 years old               70
 4 2020-01-01     male  Eisenstadt <10101>          3 years old               83
 5 2020-01-01     male  Eisenstadt <10101>          4 years old               67
 6 2020-01-01     male  Eisenstadt <10101>          5 years old               56
 7 2020-01-01     male  Eisenstadt <10101>          6 years old               75
 8 2020-01-01     male  Eisenstadt <10101>          7 years old               73
 9 2020-01-01     male  Eisenstadt <10101>          8 years old               74
10 2020-01-01     male  Eisenstadt <10101>          9 years old               86
# ℹ 392,134 more rows
# ℹ abbreviated name: ¹​`Commune (aggregation by political district)`

The hospitalizations dataset is a timeseries from 2009 to 2019 for 115 different medical procedures.

od_table("OGD_krankenbewegungen_ex_LEISTUNGEN_1")$tabulate()
# A STATcubeR tibble: 91,898 x 6
   `Year of discharge` Sex   `Age (four classes)` NUTS-2 region (place of resi…¹
 * <date>              <fct> <fct>                <fct>                         
 1 2009-01-01          male  Up to 14 years old   Non-Austria                   
 2 2009-01-01          male  Up to 14 years old   Non-Austria                   
 3 2009-01-01          male  Up to 14 years old   Non-Austria                   
 4 2009-01-01          male  Up to 14 years old   Non-Austria                   
 5 2009-01-01          male  Up to 14 years old   Non-Austria                   
 6 2009-01-01          male  Up to 14 years old   Non-Austria                   
 7 2009-01-01          male  Up to 14 years old   Non-Austria                   
 8 2009-01-01          male  Up to 14 years old   Non-Austria                   
 9 2009-01-01          male  Up to 14 years old   Non-Austria                   
10 2009-01-01          male  Up to 14 years old   Non-Austria                   
# ℹ 91,888 more rows
# ℹ abbreviated name: ¹​`NUTS-2 region (place of residence)`
# ℹ 2 more variables: `Medical procedures - subchapters` <fct>,
#   `Medical procedures` <int>

The structure of earnings dataset showcases average earnings by four different classifications. See the tabulation article for some usage examples with this dataset.

od_table("OGD_veste309_Veste309_1")$tabulate()
# A STATcubeR tibble: 72 x 9
   Sex       Citizenship `Region (NUTS2)`   `Form of employment`                
 * <fct>     <fct>       <fct>              <fct>                               
 1 Sum total Total       Total              "Total"                             
 2 Sum total Total       Total              "Standard employment "              
 3 Sum total Total       Total              "Non-standard employment (total)"   
 4 Sum total Total       Total              "Non-standard employment: part-time…
 5 Sum total Total       Total              "Non-standard employment: fixed-ter…
 6 Sum total Total       Total              "Non-standard employment: marginal …
 7 Sum total Total       Total              "Non-standard employment: temporary…
 8 Sum total Total       AT11 Burgenland    "Total"                             
 9 Sum total Total       AT12 Lower Austria "Total"                             
10 Sum total Total       AT13 Vienna        "Total"                             
# ℹ 62 more rows
# ℹ 5 more variables: `Arithmetic mean` <dbl>, `1st quartile` <dbl>,
#   `2nd quartile (median)` <dbl>, `3rd quartile` <dbl>,
#   `Number of employees` <dbl>

The household forecast contains predictions about the number of private households by 4 household characteristics from 2011 to 2080.

od_table(dat_name)$tabulate()
# A STATcubeR tibble: 630 x 4
   Time       `Province (NUTS 2-Einheit) <9>` Private households at the end of…¹
 * <date>     <fct>                                                        <int>
 1 2011-01-01 Burgenland <AT11>                                           117588
 2 2011-01-01 Carinthia <AT21>                                            241461
 3 2011-01-01 Lower Austria <AT12>                                        682380
 4 2011-01-01 Upper Austria <AT31>                                        593029
 5 2011-01-01 Salzburg <AT32>                                             224629
 6 2011-01-01 Styria <AT22>                                               515258
 7 2011-01-01 Tyrol <AT33>                                                299024
 8 2011-01-01 Vorarlberg <AT34>                                           152948
 9 2011-01-01 Vienna <AT13>                                               843181
10 2012-01-01 Burgenland <AT11>                                           118776
# ℹ 620 more rows
# ℹ abbreviated name: ¹​`Private households at the end of the year`
# ℹ 1 more variable: `Annual average of private households` <int>

The GRP dataset contains GRP for all NUTS-3 regions between 2000 and 2019.

od_table("OGD_vgrrgr104_RGR104_1")$tabulate()
# A STATcubeR tibble: 1,114 x 6
   Time       `NUTS-3`                        Gross regional product; current …¹
 * <date>     <fct>                                                        <dbl>
 1 2000-01-01 Mittelburgenland <AT111>                                       597
 2 2000-01-01 Nordburgenland <AT112>                                        2641
 3 2000-01-01 Südburgenland <AT113>                                         1559
 4 2000-01-01 Mostviertel-Eisenwurzen <AT121>                               4778
 5 2000-01-01 Niederösterreich-Süd <AT122>                                  4714
 6 2000-01-01 Sankt Pölten <AT123>                                          3647
 7 2000-01-01 Waldviertel <AT124>                                           3947
 8 2000-01-01 Weinviertel <AT125>                                           1722
 9 2000-01-01 Wiener Umland-Nordteil <AT126>                                4841
10 2000-01-01 Wiener Umland-Südteil <AT127>                                 9886
# ℹ 1,104 more rows
# ℹ abbreviated name: ¹​`Gross regional product; current prices in million Euro`
# ℹ 3 more variables: `Gross regional product per inhabitant` <dbl>,
#   `Gross regional product per person employed` <dbl>,
#   `Change in % to previous year prices` <dbl>