Suitable donors are searched based on matching of the categorical variables. The variables are dropped in reversed order, so that the last element of 'match_var' is dropped first and the first element of the vector is dropped last.
data.frame, data.table or matrix
variables to be imputed
variables used for matching
TRUE/FALSE if a TRUE/FALSE variables for each imputed variable should be created show the imputation status
suffix for the TRUE/FALSE variables showing the imputation status
the imputed data set.
The method works by sampling values from the suitable donors.
Other imputation methods:
hotdeck(),
impPCA(),
irmi(),
kNN(),
medianSamp(),
rangerImpute(),
regressionImp(),
sampleCat(),
vimpute(),
xgboostImpute()
data(sleep,package="VIM")
imp_data <- matchImpute(sleep,variable=c("NonD","Dream","Sleep","Span","Gest"),
match_var=c("Exp","Danger"))
data(testdata,package="VIM")
imp_testdata1 <- matchImpute(testdata$wna,match_var=c("c1","c2","b1","b2"))
dt <- data.table::data.table(testdata$wna)
imp_testdata2 <- matchImpute(dt,match_var=c("c1","c2","b1","b2"))