Impute missing values based on a random forest model using xgboost::xgboost()

xgboostImpute(
  formula,
  data,
  imp_var = TRUE,
  imp_suffix = "imp",
  verbose = FALSE,
  nrounds = 100,
  objective = NULL,
  ...
)

Arguments

formula

model formula for the imputation

data

A data.frame containing the data

imp_var

TRUE/FALSE if a TRUE/FALSE variables for each imputed variable should be created show the imputation status

imp_suffix

suffix used for TF imputation variables

verbose

Show the number of observations used for training and evaluating the RF-Model. This parameter is also passed down to xgboost::xgboost() to show computation status.

nrounds

max number of boosting iterations, argument passed to xgboost::xgboost()

objective

objective for xgboost, argument passed to xgboost::xgboost()

...

Arguments passed to xgboost::xgboost()

Value

the imputed data set.

See also

Other imputation methods: hotdeck(), impPCA(), irmi(), kNN(), matchImpute(), medianSamp(), rangerImpute(), regressionImp(), sampleCat()

Examples

data(sleep)
xgboostImpute(Dream~BodyWgt+BrainWgt,data=sleep)
#>     BodyWgt BrainWgt NonD     Dream Sleep  Span  Gest Pred Exp Danger Dream_imp
#> 1  6654.000  5712.00   NA 1.7991470   3.3  38.6 645.0    3   5      3      TRUE
#> 2     1.000     6.60  6.3 2.0000000   8.3   4.5  42.0    3   1      3     FALSE
#> 3     3.385    44.50   NA 3.5981774  12.5  14.0  60.0    1   1      1      TRUE
#> 4     0.920     5.70   NA 0.9710111  16.5    NA  25.0    5   2      3      TRUE
#> 5  2547.000  4603.00  2.1 1.8000000   3.9  69.0 624.0    3   5      4     FALSE
#> 6    10.550   179.50  9.1 0.7000000   9.8  27.0 180.0    4   4      4     FALSE
#> 7     0.023     0.30 15.8 3.9000000  19.7  19.0  35.0    1   1      1     FALSE
#> 8   160.000   169.00  5.2 1.0000000   6.2  30.4 392.0    4   5      4     FALSE
#> 9     3.300    25.60 10.9 3.6000000  14.5  28.0  63.0    1   2      1     FALSE
#> 10   52.160   440.00  8.3 1.4000000   9.7  50.0 230.0    1   1      1     FALSE
#> 11    0.425     6.40 11.0 1.5000000  12.5   7.0 112.0    5   4      4     FALSE
#> 12  465.000   423.00  3.2 0.7000000   3.9  30.0 281.0    5   5      5     FALSE
#> 13    0.550     2.40  7.6 2.7000000  10.3    NA    NA    2   1      2     FALSE
#> 14  187.100   419.00   NA 1.5919796   3.1  40.0 365.0    5   5      5      TRUE
#> 15    0.075     1.20  6.3 2.1000000   8.4   3.5  42.0    1   1      1     FALSE
#> 16    3.000    25.00  8.6 0.0000000   8.6  50.0  28.0    2   2      2     FALSE
#> 17    0.785     3.50  6.6 4.1000000  10.7   6.0  42.0    2   2      2     FALSE
#> 18    0.200     5.00  9.5 1.2000000  10.7  10.4 120.0    2   2      2     FALSE
#> 19    1.410    17.50  4.8 1.3000000   6.1  34.0    NA    1   2      1     FALSE
#> 20   60.000    81.00 12.0 6.1000000  18.1   7.0    NA    1   1      1     FALSE
#> 21  529.000   680.00   NA 0.3000000    NA  28.0 400.0    5   5      5     FALSE
#> 22   27.660   115.00  3.3 0.5000000   3.8  20.0 148.0    5   5      5     FALSE
#> 23    0.120     1.00 11.0 3.4000000  14.4   3.9  16.0    3   1      2     FALSE
#> 24  207.000   406.00   NA 1.5919796  12.0  39.3 252.0    1   4      1      TRUE
#> 25   85.000   325.00  4.7 1.5000000   6.2  41.0 310.0    1   3      1     FALSE
#> 26   36.330   119.50   NA 0.4998185  13.0  16.2  63.0    1   1      1      TRUE
#> 27    0.101     4.00 10.4 3.4000000  13.8   9.0  28.0    5   1      3     FALSE
#> 28    1.040     5.50  7.4 0.8000000   8.2   7.6  68.0    5   3      4     FALSE
#> 29  521.000   655.00  2.1 0.8000000   2.9  46.0 336.0    5   5      5     FALSE
#> 30  100.000   157.00   NA 0.9688541  10.8  22.4 100.0    1   1      1      TRUE
#> 31   35.000    56.00   NA 4.0075836    NA  16.3  33.0    3   5      4      TRUE
#> 32    0.005     0.14  7.7 1.4000000   9.1   2.6  21.5    5   2      4     FALSE
#> 33    0.010     0.25 17.9 2.0000000  19.9  24.0  50.0    1   1      1     FALSE
#> 34   62.000  1320.00  6.1 1.9000000   8.0 100.0 267.0    1   1      1     FALSE
#> 35    0.122     3.00  8.2 2.4000000  10.6    NA  30.0    2   1      1     FALSE
#> 36    1.350     8.10  8.4 2.8000000  11.2    NA  45.0    3   1      3     FALSE
#> 37    0.023     0.40 11.9 1.3000000  13.2   3.2  19.0    4   1      3     FALSE
#> 38    0.048     0.33 10.8 2.0000000  12.8   2.0  30.0    4   1      3     FALSE
#> 39    1.700     6.30 13.8 5.6000000  19.4   5.0  12.0    2   1      1     FALSE
#> 40    3.500    10.80 14.3 3.1000000  17.4   6.5 120.0    2   1      1     FALSE
#> 41  250.000   490.00   NA 1.0000000    NA  23.6 440.0    5   5      5     FALSE
#> 42    0.480    15.50 15.2 1.8000000  17.0  12.0 140.0    2   2      2     FALSE
#> 43   10.000   115.00 10.0 0.9000000  10.9  20.2 170.0    4   4      4     FALSE
#> 44    1.620    11.40 11.9 1.8000000  13.7  13.0  17.0    2   1      2     FALSE
#> 45  192.000   180.00  6.5 1.9000000   8.4  27.0 115.0    4   4      4     FALSE
#> 46    2.500    12.10  7.5 0.9000000   8.4  18.0  31.0    5   5      5     FALSE
#> 47    4.288    39.20   NA 2.4003341  12.5  13.7  63.0    2   2      2      TRUE
#> 48    0.280     1.90 10.6 2.6000000  13.2   4.7  21.0    3   1      3     FALSE
#> 49    4.235    50.40  7.4 2.4000000   9.8   9.8  52.0    1   1      1     FALSE
#> 50    6.800   179.00  8.4 1.2000000   9.6  29.0 164.0    2   3      2     FALSE
#> 51    0.750    12.30  5.7 0.9000000   6.6   7.0 225.0    2   2      2     FALSE
#> 52    3.600    21.00  4.9 0.5000000   5.4   6.0 225.0    3   2      3     FALSE
#> 53   14.830    98.20   NA 0.6781464   2.6  17.0 150.0    5   5      5      TRUE
#> 54   55.500   175.00  3.2 0.6000000   3.8  20.0 151.0    5   5      5     FALSE
#> 55    1.400    12.50   NA 1.0527972  11.0  12.7  90.0    2   2      2      TRUE
#> 56    0.060     1.00  8.1 2.2000000  10.3   3.5    NA    3   1      2     FALSE
#> 57    0.900     2.60 11.0 2.3000000  13.3   4.5  60.0    2   1      2     FALSE
#> 58    2.000    12.30  4.9 0.5000000   5.4   7.5 200.0    3   1      3     FALSE
#> 59    0.104     2.50 13.2 2.6000000  15.8   2.3  46.0    3   2      2     FALSE
#> 60    4.190    58.00  9.7 0.6000000  10.3  24.0 210.0    4   3      4     FALSE
#> 61    3.500     3.90 12.8 6.6000000  19.4   3.0  14.0    2   1      1     FALSE
#> 62    4.050    17.00   NA 0.5567985    NA  13.0  38.0    3   1      1      TRUE
xgboostImpute(Dream+NonD~BodyWgt+BrainWgt,data=sleep)
#>     BodyWgt BrainWgt      NonD     Dream Sleep  Span  Gest Pred Exp Danger
#> 1  6654.000  5712.00  2.100612 1.7991470   3.3  38.6 645.0    3   5      3
#> 2     1.000     6.60  6.300000 2.0000000   8.3   4.5  42.0    3   1      3
#> 3     3.385    44.50 10.897229 3.5981774  12.5  14.0  60.0    1   1      1
#> 4     0.920     5.70  7.107610 0.9710111  16.5    NA  25.0    5   2      3
#> 5  2547.000  4603.00  2.100000 1.8000000   3.9  69.0 624.0    3   5      4
#> 6    10.550   179.50  9.100000 0.7000000   9.8  27.0 180.0    4   4      4
#> 7     0.023     0.30 15.800000 3.9000000  19.7  19.0  35.0    1   1      1
#> 8   160.000   169.00  5.200000 1.0000000   6.2  30.4 392.0    4   5      4
#> 9     3.300    25.60 10.900000 3.6000000  14.5  28.0  63.0    1   2      1
#> 10   52.160   440.00  8.300000 1.4000000   9.7  50.0 230.0    1   1      1
#> 11    0.425     6.40 11.000000 1.5000000  12.5   7.0 112.0    5   4      4
#> 12  465.000   423.00  3.200000 0.7000000   3.9  30.0 281.0    5   5      5
#> 13    0.550     2.40  7.600000 2.7000000  10.3    NA    NA    2   1      2
#> 14  187.100   419.00  5.839931 1.5919796   3.1  40.0 365.0    5   5      5
#> 15    0.075     1.20  6.300000 2.1000000   8.4   3.5  42.0    1   1      1
#> 16    3.000    25.00  8.600000 0.0000000   8.6  50.0  28.0    2   2      2
#> 17    0.785     3.50  6.600000 4.1000000  10.7   6.0  42.0    2   2      2
#> 18    0.200     5.00  9.500000 1.2000000  10.7  10.4 120.0    2   2      2
#> 19    1.410    17.50  4.800000 1.3000000   6.1  34.0    NA    1   2      1
#> 20   60.000    81.00 12.000000 6.1000000  18.1   7.0    NA    1   1      1
#> 21  529.000   680.00  2.100612 0.3000000    NA  28.0 400.0    5   5      5
#> 22   27.660   115.00  3.300000 0.5000000   3.8  20.0 148.0    5   5      5
#> 23    0.120     1.00 11.000000 3.4000000  14.4   3.9  16.0    3   1      2
#> 24  207.000   406.00  5.839931 1.5919796  12.0  39.3 252.0    1   4      1
#> 25   85.000   325.00  4.700000 1.5000000   6.2  41.0 310.0    1   3      1
#> 26   36.330   119.50  3.302149 0.4998185  13.0  16.2  63.0    1   1      1
#> 27    0.101     4.00 10.400000 3.4000000  13.8   9.0  28.0    5   1      3
#> 28    1.040     5.50  7.400000 0.8000000   8.2   7.6  68.0    5   3      4
#> 29  521.000   655.00  2.100000 0.8000000   2.9  46.0 336.0    5   5      5
#> 30  100.000   157.00  4.058626 0.9688541  10.8  22.4 100.0    1   1      1
#> 31   35.000    56.00  6.824033 4.0075836    NA  16.3  33.0    3   5      4
#> 32    0.005     0.14  7.700000 1.4000000   9.1   2.6  21.5    5   2      4
#> 33    0.010     0.25 17.900000 2.0000000  19.9  24.0  50.0    1   1      1
#> 34   62.000  1320.00  6.100000 1.9000000   8.0 100.0 267.0    1   1      1
#> 35    0.122     3.00  8.200000 2.4000000  10.6    NA  30.0    2   1      1
#> 36    1.350     8.10  8.400000 2.8000000  11.2    NA  45.0    3   1      3
#> 37    0.023     0.40 11.900000 1.3000000  13.2   3.2  19.0    4   1      3
#> 38    0.048     0.33 10.800000 2.0000000  12.8   2.0  30.0    4   1      3
#> 39    1.700     6.30 13.800000 5.6000000  19.4   5.0  12.0    2   1      1
#> 40    3.500    10.80 14.300000 3.1000000  17.4   6.5 120.0    2   1      1
#> 41  250.000   490.00  5.859960 1.0000000    NA  23.6 440.0    5   5      5
#> 42    0.480    15.50 15.200000 1.8000000  17.0  12.0 140.0    2   2      2
#> 43   10.000   115.00 10.000000 0.9000000  10.9  20.2 170.0    4   4      4
#> 44    1.620    11.40 11.900000 1.8000000  13.7  13.0  17.0    2   1      2
#> 45  192.000   180.00  6.500000 1.9000000   8.4  27.0 115.0    4   4      4
#> 46    2.500    12.10  7.500000 0.9000000   8.4  18.0  31.0    5   5      5
#> 47    4.288    39.20  7.402361 2.4003341  12.5  13.7  63.0    2   2      2
#> 48    0.280     1.90 10.600000 2.6000000  13.2   4.7  21.0    3   1      3
#> 49    4.235    50.40  7.400000 2.4000000   9.8   9.8  52.0    1   1      1
#> 50    6.800   179.00  8.400000 1.2000000   9.6  29.0 164.0    2   3      2
#> 51    0.750    12.30  5.700000 0.9000000   6.6   7.0 225.0    2   2      2
#> 52    3.600    21.00  4.900000 0.5000000   5.4   6.0 225.0    3   2      3
#> 53   14.830    98.20  8.954710 0.6781464   2.6  17.0 150.0    5   5      5
#> 54   55.500   175.00  3.200000 0.6000000   3.8  20.0 151.0    5   5      5
#> 55    1.400    12.50  3.977688 1.0527972  11.0  12.7  90.0    2   2      2
#> 56    0.060     1.00  8.100000 2.2000000  10.3   3.5    NA    3   1      2
#> 57    0.900     2.60 11.000000 2.3000000  13.3   4.5  60.0    2   1      2
#> 58    2.000    12.30  4.900000 0.5000000   5.4   7.5 200.0    3   1      3
#> 59    0.104     2.50 13.200000 2.6000000  15.8   2.3  46.0    3   2      2
#> 60    4.190    58.00  9.700000 0.6000000  10.3  24.0 210.0    4   3      4
#> 61    3.500     3.90 12.800000 6.6000000  19.4   3.0  14.0    2   1      1
#> 62    4.050    17.00  4.717938 0.5567985    NA  13.0  38.0    3   1      1
#>    Dream_imp NonD_imp
#> 1       TRUE     TRUE
#> 2      FALSE    FALSE
#> 3       TRUE     TRUE
#> 4       TRUE     TRUE
#> 5      FALSE    FALSE
#> 6      FALSE    FALSE
#> 7      FALSE    FALSE
#> 8      FALSE    FALSE
#> 9      FALSE    FALSE
#> 10     FALSE    FALSE
#> 11     FALSE    FALSE
#> 12     FALSE    FALSE
#> 13     FALSE    FALSE
#> 14      TRUE     TRUE
#> 15     FALSE    FALSE
#> 16     FALSE    FALSE
#> 17     FALSE    FALSE
#> 18     FALSE    FALSE
#> 19     FALSE    FALSE
#> 20     FALSE    FALSE
#> 21     FALSE     TRUE
#> 22     FALSE    FALSE
#> 23     FALSE    FALSE
#> 24      TRUE     TRUE
#> 25     FALSE    FALSE
#> 26      TRUE     TRUE
#> 27     FALSE    FALSE
#> 28     FALSE    FALSE
#> 29     FALSE    FALSE
#> 30      TRUE     TRUE
#> 31      TRUE     TRUE
#> 32     FALSE    FALSE
#> 33     FALSE    FALSE
#> 34     FALSE    FALSE
#> 35     FALSE    FALSE
#> 36     FALSE    FALSE
#> 37     FALSE    FALSE
#> 38     FALSE    FALSE
#> 39     FALSE    FALSE
#> 40     FALSE    FALSE
#> 41     FALSE     TRUE
#> 42     FALSE    FALSE
#> 43     FALSE    FALSE
#> 44     FALSE    FALSE
#> 45     FALSE    FALSE
#> 46     FALSE    FALSE
#> 47      TRUE     TRUE
#> 48     FALSE    FALSE
#> 49     FALSE    FALSE
#> 50     FALSE    FALSE
#> 51     FALSE    FALSE
#> 52     FALSE    FALSE
#> 53      TRUE     TRUE
#> 54     FALSE    FALSE
#> 55      TRUE     TRUE
#> 56     FALSE    FALSE
#> 57     FALSE    FALSE
#> 58     FALSE    FALSE
#> 59     FALSE    FALSE
#> 60     FALSE    FALSE
#> 61     FALSE    FALSE
#> 62      TRUE     TRUE
xgboostImpute(Dream+NonD+Gest~BodyWgt+BrainWgt,data=sleep)
#>     BodyWgt BrainWgt      NonD     Dream Sleep  Span      Gest Pred Exp Danger
#> 1  6654.000  5712.00  2.100612 1.7991470   3.3  38.6 645.00000    3   5      3
#> 2     1.000     6.60  6.300000 2.0000000   8.3   4.5  42.00000    3   1      3
#> 3     3.385    44.50 10.897229 3.5981774  12.5  14.0  60.00000    1   1      1
#> 4     0.920     5.70  7.107610 0.9710111  16.5    NA  25.00000    5   2      3
#> 5  2547.000  4603.00  2.100000 1.8000000   3.9  69.0 624.00000    3   5      4
#> 6    10.550   179.50  9.100000 0.7000000   9.8  27.0 180.00000    4   4      4
#> 7     0.023     0.30 15.800000 3.9000000  19.7  19.0  35.00000    1   1      1
#> 8   160.000   169.00  5.200000 1.0000000   6.2  30.4 392.00000    4   5      4
#> 9     3.300    25.60 10.900000 3.6000000  14.5  28.0  63.00000    1   2      1
#> 10   52.160   440.00  8.300000 1.4000000   9.7  50.0 230.00000    1   1      1
#> 11    0.425     6.40 11.000000 1.5000000  12.5   7.0 112.00000    5   4      4
#> 12  465.000   423.00  3.200000 0.7000000   3.9  30.0 281.00000    5   5      5
#> 13    0.550     2.40  7.600000 2.7000000  10.3    NA  50.22270    2   1      2
#> 14  187.100   419.00  5.839931 1.5919796   3.1  40.0 365.00000    5   5      5
#> 15    0.075     1.20  6.300000 2.1000000   8.4   3.5  42.00000    1   1      1
#> 16    3.000    25.00  8.600000 0.0000000   8.6  50.0  28.00000    2   2      2
#> 17    0.785     3.50  6.600000 4.1000000  10.7   6.0  42.00000    2   2      2
#> 18    0.200     5.00  9.500000 1.2000000  10.7  10.4 120.00000    2   2      2
#> 19    1.410    17.50  4.800000 1.3000000   6.1  34.0  90.02483    1   2      1
#> 20   60.000    81.00 12.000000 6.1000000  18.1   7.0 118.77264    1   1      1
#> 21  529.000   680.00  2.100612 0.3000000    NA  28.0 400.00000    5   5      5
#> 22   27.660   115.00  3.300000 0.5000000   3.8  20.0 148.00000    5   5      5
#> 23    0.120     1.00 11.000000 3.4000000  14.4   3.9  16.00000    3   1      2
#> 24  207.000   406.00  5.839931 1.5919796  12.0  39.3 252.00000    1   4      1
#> 25   85.000   325.00  4.700000 1.5000000   6.2  41.0 310.00000    1   3      1
#> 26   36.330   119.50  3.302149 0.4998185  13.0  16.2  63.00000    1   1      1
#> 27    0.101     4.00 10.400000 3.4000000  13.8   9.0  28.00000    5   1      3
#> 28    1.040     5.50  7.400000 0.8000000   8.2   7.6  68.00000    5   3      4
#> 29  521.000   655.00  2.100000 0.8000000   2.9  46.0 336.00000    5   5      5
#> 30  100.000   157.00  4.058626 0.9688541  10.8  22.4 100.00000    1   1      1
#> 31   35.000    56.00  6.824033 4.0075836    NA  16.3  33.00000    3   5      4
#> 32    0.005     0.14  7.700000 1.4000000   9.1   2.6  21.50000    5   2      4
#> 33    0.010     0.25 17.900000 2.0000000  19.9  24.0  50.00000    1   1      1
#> 34   62.000  1320.00  6.100000 1.9000000   8.0 100.0 267.00000    1   1      1
#> 35    0.122     3.00  8.200000 2.4000000  10.6    NA  30.00000    2   1      1
#> 36    1.350     8.10  8.400000 2.8000000  11.2    NA  45.00000    3   1      3
#> 37    0.023     0.40 11.900000 1.3000000  13.2   3.2  19.00000    4   1      3
#> 38    0.048     0.33 10.800000 2.0000000  12.8   2.0  30.00000    4   1      3
#> 39    1.700     6.30 13.800000 5.6000000  19.4   5.0  12.00000    2   1      1
#> 40    3.500    10.80 14.300000 3.1000000  17.4   6.5 120.00000    2   1      1
#> 41  250.000   490.00  5.859960 1.0000000    NA  23.6 440.00000    5   5      5
#> 42    0.480    15.50 15.200000 1.8000000  17.0  12.0 140.00000    2   2      2
#> 43   10.000   115.00 10.000000 0.9000000  10.9  20.2 170.00000    4   4      4
#> 44    1.620    11.40 11.900000 1.8000000  13.7  13.0  17.00000    2   1      2
#> 45  192.000   180.00  6.500000 1.9000000   8.4  27.0 115.00000    4   4      4
#> 46    2.500    12.10  7.500000 0.9000000   8.4  18.0  31.00000    5   5      5
#> 47    4.288    39.20  7.402361 2.4003341  12.5  13.7  63.00000    2   2      2
#> 48    0.280     1.90 10.600000 2.6000000  13.2   4.7  21.00000    3   1      3
#> 49    4.235    50.40  7.400000 2.4000000   9.8   9.8  52.00000    1   1      1
#> 50    6.800   179.00  8.400000 1.2000000   9.6  29.0 164.00000    2   3      2
#> 51    0.750    12.30  5.700000 0.9000000   6.6   7.0 225.00000    2   2      2
#> 52    3.600    21.00  4.900000 0.5000000   5.4   6.0 225.00000    3   2      3
#> 53   14.830    98.20  8.954710 0.6781464   2.6  17.0 150.00000    5   5      5
#> 54   55.500   175.00  3.200000 0.6000000   3.8  20.0 151.00000    5   5      5
#> 55    1.400    12.50  3.977688 1.0527972  11.0  12.7  90.00000    2   2      2
#> 56    0.060     1.00  8.100000 2.2000000  10.3   3.5  19.44205    3   1      2
#> 57    0.900     2.60 11.000000 2.3000000  13.3   4.5  60.00000    2   1      2
#> 58    2.000    12.30  4.900000 0.5000000   5.4   7.5 200.00000    3   1      3
#> 59    0.104     2.50 13.200000 2.6000000  15.8   2.3  46.00000    3   2      2
#> 60    4.190    58.00  9.700000 0.6000000  10.3  24.0 210.00000    4   3      4
#> 61    3.500     3.90 12.800000 6.6000000  19.4   3.0  14.00000    2   1      1
#> 62    4.050    17.00  4.717938 0.5567985    NA  13.0  38.00000    3   1      1
#>    Dream_imp NonD_imp Gest_imp
#> 1       TRUE     TRUE    FALSE
#> 2      FALSE    FALSE    FALSE
#> 3       TRUE     TRUE    FALSE
#> 4       TRUE     TRUE    FALSE
#> 5      FALSE    FALSE    FALSE
#> 6      FALSE    FALSE    FALSE
#> 7      FALSE    FALSE    FALSE
#> 8      FALSE    FALSE    FALSE
#> 9      FALSE    FALSE    FALSE
#> 10     FALSE    FALSE    FALSE
#> 11     FALSE    FALSE    FALSE
#> 12     FALSE    FALSE    FALSE
#> 13     FALSE    FALSE     TRUE
#> 14      TRUE     TRUE    FALSE
#> 15     FALSE    FALSE    FALSE
#> 16     FALSE    FALSE    FALSE
#> 17     FALSE    FALSE    FALSE
#> 18     FALSE    FALSE    FALSE
#> 19     FALSE    FALSE     TRUE
#> 20     FALSE    FALSE     TRUE
#> 21     FALSE     TRUE    FALSE
#> 22     FALSE    FALSE    FALSE
#> 23     FALSE    FALSE    FALSE
#> 24      TRUE     TRUE    FALSE
#> 25     FALSE    FALSE    FALSE
#> 26      TRUE     TRUE    FALSE
#> 27     FALSE    FALSE    FALSE
#> 28     FALSE    FALSE    FALSE
#> 29     FALSE    FALSE    FALSE
#> 30      TRUE     TRUE    FALSE
#> 31      TRUE     TRUE    FALSE
#> 32     FALSE    FALSE    FALSE
#> 33     FALSE    FALSE    FALSE
#> 34     FALSE    FALSE    FALSE
#> 35     FALSE    FALSE    FALSE
#> 36     FALSE    FALSE    FALSE
#> 37     FALSE    FALSE    FALSE
#> 38     FALSE    FALSE    FALSE
#> 39     FALSE    FALSE    FALSE
#> 40     FALSE    FALSE    FALSE
#> 41     FALSE     TRUE    FALSE
#> 42     FALSE    FALSE    FALSE
#> 43     FALSE    FALSE    FALSE
#> 44     FALSE    FALSE    FALSE
#> 45     FALSE    FALSE    FALSE
#> 46     FALSE    FALSE    FALSE
#> 47      TRUE     TRUE    FALSE
#> 48     FALSE    FALSE    FALSE
#> 49     FALSE    FALSE    FALSE
#> 50     FALSE    FALSE    FALSE
#> 51     FALSE    FALSE    FALSE
#> 52     FALSE    FALSE    FALSE
#> 53      TRUE     TRUE    FALSE
#> 54     FALSE    FALSE    FALSE
#> 55      TRUE     TRUE    FALSE
#> 56     FALSE    FALSE     TRUE
#> 57     FALSE    FALSE    FALSE
#> 58     FALSE    FALSE    FALSE
#> 59     FALSE    FALSE    FALSE
#> 60     FALSE    FALSE    FALSE
#> 61     FALSE    FALSE    FALSE
#> 62      TRUE     TRUE    FALSE

sleepx <- sleep
sleepx$Pred <- as.factor(LETTERS[sleepx$Pred])
sleepx$Pred[1] <- NA
xgboostImpute(Pred~BodyWgt+BrainWgt,data=sleepx)
#>     BodyWgt BrainWgt NonD Dream Sleep  Span  Gest Pred Exp Danger Pred_imp
#> 1  6654.000  5712.00   NA    NA   3.3  38.6 645.0    E   5      3     TRUE
#> 2     1.000     6.60  6.3   2.0   8.3   4.5  42.0    C   1      3    FALSE
#> 3     3.385    44.50   NA    NA  12.5  14.0  60.0    A   1      1    FALSE
#> 4     0.920     5.70   NA    NA  16.5    NA  25.0    E   2      3    FALSE
#> 5  2547.000  4603.00  2.1   1.8   3.9  69.0 624.0    C   5      4    FALSE
#> 6    10.550   179.50  9.1   0.7   9.8  27.0 180.0    D   4      4    FALSE
#> 7     0.023     0.30 15.8   3.9  19.7  19.0  35.0    A   1      1    FALSE
#> 8   160.000   169.00  5.2   1.0   6.2  30.4 392.0    D   5      4    FALSE
#> 9     3.300    25.60 10.9   3.6  14.5  28.0  63.0    A   2      1    FALSE
#> 10   52.160   440.00  8.3   1.4   9.7  50.0 230.0    A   1      1    FALSE
#> 11    0.425     6.40 11.0   1.5  12.5   7.0 112.0    E   4      4    FALSE
#> 12  465.000   423.00  3.2   0.7   3.9  30.0 281.0    E   5      5    FALSE
#> 13    0.550     2.40  7.6   2.7  10.3    NA    NA    B   1      2    FALSE
#> 14  187.100   419.00   NA    NA   3.1  40.0 365.0    E   5      5    FALSE
#> 15    0.075     1.20  6.3   2.1   8.4   3.5  42.0    A   1      1    FALSE
#> 16    3.000    25.00  8.6   0.0   8.6  50.0  28.0    B   2      2    FALSE
#> 17    0.785     3.50  6.6   4.1  10.7   6.0  42.0    B   2      2    FALSE
#> 18    0.200     5.00  9.5   1.2  10.7  10.4 120.0    B   2      2    FALSE
#> 19    1.410    17.50  4.8   1.3   6.1  34.0    NA    A   2      1    FALSE
#> 20   60.000    81.00 12.0   6.1  18.1   7.0    NA    A   1      1    FALSE
#> 21  529.000   680.00   NA   0.3    NA  28.0 400.0    E   5      5    FALSE
#> 22   27.660   115.00  3.3   0.5   3.8  20.0 148.0    E   5      5    FALSE
#> 23    0.120     1.00 11.0   3.4  14.4   3.9  16.0    C   1      2    FALSE
#> 24  207.000   406.00   NA    NA  12.0  39.3 252.0    A   4      1    FALSE
#> 25   85.000   325.00  4.7   1.5   6.2  41.0 310.0    A   3      1    FALSE
#> 26   36.330   119.50   NA    NA  13.0  16.2  63.0    A   1      1    FALSE
#> 27    0.101     4.00 10.4   3.4  13.8   9.0  28.0    E   1      3    FALSE
#> 28    1.040     5.50  7.4   0.8   8.2   7.6  68.0    E   3      4    FALSE
#> 29  521.000   655.00  2.1   0.8   2.9  46.0 336.0    E   5      5    FALSE
#> 30  100.000   157.00   NA    NA  10.8  22.4 100.0    A   1      1    FALSE
#> 31   35.000    56.00   NA    NA    NA  16.3  33.0    C   5      4    FALSE
#> 32    0.005     0.14  7.7   1.4   9.1   2.6  21.5    E   2      4    FALSE
#> 33    0.010     0.25 17.9   2.0  19.9  24.0  50.0    A   1      1    FALSE
#> 34   62.000  1320.00  6.1   1.9   8.0 100.0 267.0    A   1      1    FALSE
#> 35    0.122     3.00  8.2   2.4  10.6    NA  30.0    B   1      1    FALSE
#> 36    1.350     8.10  8.4   2.8  11.2    NA  45.0    C   1      3    FALSE
#> 37    0.023     0.40 11.9   1.3  13.2   3.2  19.0    D   1      3    FALSE
#> 38    0.048     0.33 10.8   2.0  12.8   2.0  30.0    D   1      3    FALSE
#> 39    1.700     6.30 13.8   5.6  19.4   5.0  12.0    B   1      1    FALSE
#> 40    3.500    10.80 14.3   3.1  17.4   6.5 120.0    B   1      1    FALSE
#> 41  250.000   490.00   NA   1.0    NA  23.6 440.0    E   5      5    FALSE
#> 42    0.480    15.50 15.2   1.8  17.0  12.0 140.0    B   2      2    FALSE
#> 43   10.000   115.00 10.0   0.9  10.9  20.2 170.0    D   4      4    FALSE
#> 44    1.620    11.40 11.9   1.8  13.7  13.0  17.0    B   1      2    FALSE
#> 45  192.000   180.00  6.5   1.9   8.4  27.0 115.0    D   4      4    FALSE
#> 46    2.500    12.10  7.5   0.9   8.4  18.0  31.0    E   5      5    FALSE
#> 47    4.288    39.20   NA    NA  12.5  13.7  63.0    B   2      2    FALSE
#> 48    0.280     1.90 10.6   2.6  13.2   4.7  21.0    C   1      3    FALSE
#> 49    4.235    50.40  7.4   2.4   9.8   9.8  52.0    A   1      1    FALSE
#> 50    6.800   179.00  8.4   1.2   9.6  29.0 164.0    B   3      2    FALSE
#> 51    0.750    12.30  5.7   0.9   6.6   7.0 225.0    B   2      2    FALSE
#> 52    3.600    21.00  4.9   0.5   5.4   6.0 225.0    C   2      3    FALSE
#> 53   14.830    98.20   NA    NA   2.6  17.0 150.0    E   5      5    FALSE
#> 54   55.500   175.00  3.2   0.6   3.8  20.0 151.0    E   5      5    FALSE
#> 55    1.400    12.50   NA    NA  11.0  12.7  90.0    B   2      2    FALSE
#> 56    0.060     1.00  8.1   2.2  10.3   3.5    NA    C   1      2    FALSE
#> 57    0.900     2.60 11.0   2.3  13.3   4.5  60.0    B   1      2    FALSE
#> 58    2.000    12.30  4.9   0.5   5.4   7.5 200.0    C   1      3    FALSE
#> 59    0.104     2.50 13.2   2.6  15.8   2.3  46.0    C   2      2    FALSE
#> 60    4.190    58.00  9.7   0.6  10.3  24.0 210.0    D   3      4    FALSE
#> 61    3.500     3.90 12.8   6.6  19.4   3.0  14.0    B   1      1    FALSE
#> 62    4.050    17.00   NA    NA    NA  13.0  38.0    C   1      1    FALSE