This function is used by the VIM
GUI for transformation and
standardization of the data.
a vector, matrix or data.frame
.
the scaling to be applied to the data. Possible values are
"none"
, "classical"
, MCD
, "robust"
and
"onestep"
.
the transformation of the data. Possible values are
"none"
, "minus"
, "reciprocal"
, "logarithm"
,
"exponential"
, "boxcox"
, "clr"
, "ilr"
and
"alr"
.
a numeric parameter controlling the size of the subset for the
MCD (if scaling="MCD"
). See robustbase::covMcd()
.
a numeric vector giving the powers to be used in the Box-Cox
transformation (if transformation="boxcox"
). If NULL
, the
powers are calculated with function car::powerTransform()
.
a constant to be added prior to Box-Cox transformation (if
transformation="boxcox"
).
variable to be used as denominator in the additive logratio
transformation (if transformation="alr"
).
Transformed and standardized data.
Transformation:
"none"
: no transformation is used.
"logarithm"
: compute the the logarithm (to the base 10).
"boxcox"
: apply a Box-Cox transformation. Powers may be specified or
calculated with the function car::powerTransform()
.
Standardization:
"none"
: no standardization is used.
"classical"
: apply a z-Transformation on each variable by
using function scale()
.
"robust"
: apply a robustified z-Transformation by using median
and MAD.
data(sleep, package = "VIM")
x <- sleep[, c("BodyWgt", "BrainWgt")]
prepare(x, scaling = "robust", transformation = "logarithm")
#> BodyWgt BrainWgt
#> [1,] 2.29654423 2.065651791
#> [2,] -0.36479406 -0.341973693
#> [3,] 0.00384425 0.337397352
#> [4,] -0.39000221 -0.394162508
#> [5,] 2.00622319 1.988808266
#> [6,] 0.34751616 0.833886347
#> [7,] -1.50523403 -1.442342190
#> [8,] 1.16954595 0.812428746
#> [9,] -0.00384425 0.140573701
#> [10,] 0.83068522 1.153063414
#> [11,] -0.62348131 -0.352927979
#> [12,] 1.49208299 1.139036650
#> [13,] -0.54553373 -0.702089671
#> [14,] 1.21685020 1.135654333
#> [15,] -1.14789050 -0.948840510
#> [16,] -0.03265868 0.132130944
#> [17,] -0.43797777 -0.567778126
#> [18,] -0.85136360 -0.440806763
#> [19,] -0.26091911 0.005159582
#> [20,] 0.87301905 0.550618842
#> [21,] 1.53106780 1.308030646
#> [22,] 0.63891332 0.675385949
#> [23,] -1.00579776 -1.013744471
#> [24,] 1.24740764 1.124434445
#> [25,] 0.97832006 1.045217553
#> [26,] 0.72134356 0.689050210
#> [27,] -1.05790948 -0.520242791
#> [28,] -0.35293675 -0.406877653
#> [29,] 1.52646089 1.294696270
#> [30,] 1.02745321 0.786209326
#> [31,] 0.71006820 0.419225234
#> [32,] -1.96659542 -1.713653541
#> [33,] -1.75704133 -1.507246151
#> [34,] 0.88293216 1.544154242
#> [35,] -1.00080057 -0.622653643
#> [36,] -0.27406564 -0.269069705
#> [37,] -1.50523403 -1.339931339
#> [38,] -1.28281320 -1.408413080
#> [39,] -0.20437312 -0.358534177
#> [40,] 0.01394457 -0.166658854
#> [41,] 1.30446866 1.191378447
#> [42,] -0.58668957 -0.038043210
#> [43,] 0.33132958 0.675385949
#> [44,] -0.21894570 -0.147411668
#> [45,] 1.22466589 0.834876573
#> [46,] -0.08777861 -0.126197703
#> [47,] 0.07533343 0.292253871
#> [48,] -0.74964042 -0.785253337
#> [49,] 0.07157342 0.381718343
#> [50,] 0.21473507 0.832893358
#> [51,] -0.45176687 -0.120361733
#> [52,] 0.02246126 0.070063542
#> [53,] 0.45046498 0.619166501
#> [54,] 0.84944951 0.824848129
#> [55,] -0.26307088 -0.114619896
#> [56,] -1.21535185 -1.013744471
#> [57,] -0.39664693 -0.673595570
#> [58,] -0.15523996 -0.120361733
#> [59,] -1.04906038 -0.687557603
#> [60,] 0.06834383 0.431717260
#> [61,] 0.01394457 -0.529255582
#> [62,] 0.05806974 -0.005159582
#> attr(,"scaled:center")
#> BodyWgt BrainWgt
#> 0.5240363 1.2367435
#> attr(,"scaled:scale")
#> BodyWgt BrainWgt
#> 1.436526 1.219976