Various error measures evaluating the quality of imputations
evaluation(x, y, m, vartypes = "guess")
nrmse(x, y, m)
pfc(x, y, m)
msecov(x, y)
msecor(x, y)
the error measures value
This function has been mainly written for procudures that evaluate imputation or replacement of rounded zeros. The ni parameter can thus, e.g. be used for expressing the number of rounded zeros.
M. Templ, A. Kowarik, P. Filzmoser (2011) Iterative stepwise regression imputation using standard and robust methods. Journal of Computational Statistics and Data Analysis, Vol. 55, pp. 2793-2806.
data(iris)
iris_orig <- iris_imp <- iris
iris_imp$Sepal.Length[sample(1:nrow(iris), 10)] <- NA
iris_imp$Sepal.Width[sample(1:nrow(iris), 10)] <- NA
iris_imp$Species[sample(1:nrow(iris), 10)] <- NA
m <- is.na(iris_imp)
iris_imp <- kNN(iris_imp, imp_var = FALSE)
evaluation(iris_orig, iris_imp, m = m, vartypes = c(rep("numeric", 4), "factor"))
#> $err_num
#> [1] 0.149
#>
#> $err_cat
#> [1] 0
#>
#> $error
#> [1] 0.149
#>
msecov(iris_orig[, 1:4], iris_imp[, 1:4])
#> [1] 0.0001986385