Invoke the /schema endpoint of the STATcube REST API. This endpoint can be used to get all available databases and tables as well as metadata about specific databases.
The main function sc_schema()
can be used with any resouce id.
sc_schema_catalogue()
and sc_schema_db()
are very simple
wrapper functions around sc_schema()
and are comparabable to the
catalogue explorer or the
table view of the STATcube GUI.
The responses of the API are tree-like data structures which
are wrapped into a class called sc_schema
to simplify the usage in R.
Arguments
- id
A resource identifier in uid format. In case of
sc_schema_db()
, this should be a database id. Forsc_schema()
any resource-id (folder, measure, table, ...) is accepted.- depth
If provided, the request will recurse into the given level. For datasets, available options are
NULL
(no recursion),"folder"
,"field"
and"valueset"
. For the catalogue, onlyNULL
and"folder"
are applicable.- language
The language to be used for labeling.
"en"
or"de"
- key
(
string
) An API key. To display your key, callsc_browse_preferences()
.- server
A STATcube API server. Defaults to the external Server via
"ext"
. Other options are"red"
for the editing server and"prod"
for the production server. External users should always use the default option"ext"
.- x
an object of class
sc_schema()
i.e. the return value ofsc_schema()
,sc_schema_db()
orsc_schema_catalogue()
.- tree
wether to use the
data.tree
package for printing.- limit, ...
passed to
data.tree::print.Node()
iftree
is set toTRUE
. Ignored otherwise.- type
a schema type such as "DATABASE", "VALUE" or "TABLE". See the API reference for a list of all schema types.
Functions
sc_schema_flatten()
: turns asc_schema
object into adata.frame
sc_schema_catalogue()
: is similar to the catalogue explorer of the STATcube GUI and reurns a tree-type object containing all databases and tables.sc_schema_db()
: is similar to the table view of ths STATcube GUI and gives information about all measures and classification fields for a specific database
Printing with data.tree
limit
and ...
will simply be ignored if tree
is set to FALSE
, which is
the default. The printing via data.tree
can take longer than the default
implementation because x
will need to be converted into a data.tree
node.
To use data.tree
printing permanently, use
options(STATcubeR.print_tree = TRUE)
Examples
my_catalogue <- sc_schema_catalogue()
## print
my_catalogue
#> FOLDER: Extern V9
#> 1 Examples FOLDER 9
#> 2 Publications and services FOLDER 2
#> 3 Default Tables FOLDER 0
#> 4 Statistics FOLDER 20
#> 5 Bier auf Wein TABLE 0
#> 6 hierarchical TABLE 0
#> 7 neu TABLE 0
#> 8 lebenserwartung TABLE 0
#> 9 test123 TABLE 0
## access the parsed catalogue
my_catalogue$Statistics$`Labour Market`
#> FOLDER: Labour Market
#> 1 Job Seeker FOLDER 0
#> 2 Labour Market Policy FOLDER 0
#> 3 Working Time FOLDER 0
#> 4 Activity Status FOLDER 0
#> 5 Employment FOLDER 0
#> 6 Job Vacancies FOLDER 4
#> 7 Working hours (Labour Force Survey) DATABASE 0
#> 8 Austrian Micro census - Labour Force Sur DATABASE 0
#> 9 Austrian Micro census - Labour Force Sur DATABASE 0
#> 10 Mikrozensus-Zeitreihe ab 1974 DATABASE 0
#> 11 Standardtabelle / Default table (default TABLE 0
#> 12 Standardtabelle / Default table (default TABLE 0
#> 13 Standardtabelle / Default table (default TABLE 0
#> 14 Standardtabelle / Default table (default TABLE 0
my_catalogue$Statistics$`Labour Market`$`Working hours (Labour Force Survey)`
#> DATABASE: Working hours (Labour Force Survey)
#> # Get more metdata with `sc_schema_db('deake005')`
db_schema <- sc_schema_db("deake005")
# printing
db_schema
#> DATABASE: Working hours (Labour Force Survey)
#> 1 Factors GROUP 9
#> 2 Datensätze/Records GROUP 1
#> 3 Time (mandatory field) GROUP 1
#> 4 Demographic Characteristics GROUP 8
#> 5 Employment Characteristics GROUP 6
#> 6 Working Time GROUP 5
#> 7 Characteristics of second employment GROUP 6
#> 8 Geographic Characteristics GROUP 1
# access child nodes
db_schema$`Demographic Characteristics`
#> GROUP: Demographic Characteristics
#> 1 Gender FIELD 1
#> 2 Age in years-groups FIELD 3
#> 3 Highest level of training completed (nat FIELD 2
#> 4 Highest level of training completed (ISCED 97) FIELD 2
#> 5 Highest level of training completed (ISCED 2011) FIELD 2
#> 6 Nationality FIELD 2
#> 7 Country of birth FIELD 2
#> 8 Migration background FIELD 2
db_schema$`Demographic Characteristics`$Gender$Gender
#> VALUESET: Gender
#> 1 male VALUE
#> 2 female VALUE
#> 3 Not classifiable <0> VALUE
db_schema$`Demographic Characteristics`$Gender$Gender$male
#> VALUE: male
# access the raw response from httr::GET()
my_response <- attr(db_schema, "response")
my_response$headers$date
#> [1] "Mon, 29 Aug 2022 09:51:50 GMT"
my_content <- httr::content(my_response)
my_content$label
#> [1] "Working hours (Labour Force Survey)"
# print with data.tree
"str:group:deake005:X_B1" %>%
sc_schema(depth = "valueset") %>%
print(tree = TRUE)
#> levelName type
#> 1 Demographic Characteristics GROUP
#> 2 ¦--Gender FIELD
#> 3 ¦ °--Gender VALUESET
#> 4 ¦ ¦--male VALUE
#> 5 ¦ ¦--female VALUE
#> 6 ¦ °--Not classifiable <0> VALUE
#> 7 ¦--Age in years-groups FIELD
#> 8 ¦ ¦--Age in years-groups VALUESET
#> 9 ¦ ¦ ¦--Under 15 years VALUE
#> 10 ¦ ¦ ¦--15 to 19 years VALUE
#> 11 ¦ ¦ ¦--20 to 24 years VALUE
#> 12 ¦ ¦ ¦--25 to 29 years VALUE
#> 13 ¦ ¦ ¦--30 to 34 years VALUE
#> 14 ¦ ¦ ¦--35 to 39 years VALUE
#> 15 ¦ ¦ ¦--40 to 44 years VALUE
#> 16 ¦ ¦ ¦--45 to 49 years VALUE
#> 17 ¦ ¦ ¦--50 to 54 years VALUE
#> 18 ¦ ¦ ¦--55 to 59 years VALUE
#> 19 ¦ ¦ ¦--60 to 64 years VALUE
#> 20 ¦ ¦ ¦--65 to 69 years VALUE
#> 21 ¦ ¦ ¦--70 to 74 years VALUE
#> 22 ¦ ¦ ¦--75 years and older VALUE
#> 23 ¦ ¦ °--Not classifiable <0> VALUE
#> 24 ¦ ¦--Alter in Jahresgruppen VALUESET
#> 25 ¦ ¦ ¦--Under 15 years VALUE
#> 26 ¦ ¦ ¦--15 to 24 years VALUE
#> 27 ¦ ¦ ¦--25 to 34 years VALUE
#> 28 ¦ ¦ ¦--35 to 44 years VALUE
#> 29 ¦ ¦ ¦--45 to 54 years VALUE
#> 30 ¦ ¦ °--... 3 nodes w/ 0 sub
#> 31 ¦ °--... 1 nodes w/ 6 sub
#> 32 °--... 6 nodes w/ 80 sub