AirPassengersX12.Rd
x12 Single object with the AirPassengers time series
data(AirPassengersX12)
data(AirPassengersX12)
summary(AirPassengersX12)
#> -------------------------- AirPassengers ------------------------------------
#> -----------------------------------------------------------------------------------
#>
#> Time Series
#>
#> Frequency: 12
#> Span: 1st month,1949 to 12th month,1960
#>
#> Model Definition
#>
#> ARIMA Model: (1,1,0)(0,1,1)
#> Model Span: 1st month,1949 to 12th month,1960
#> Transformation: Automatic selection : Log(y)
#> Regression Model: none
#>
#> Outlier Detection
#>
#> Outlier Span: 1st month,1949 to 12th month,1960
#> Critical |t| for outliers:
#> aocrit1 aocrit2 lscrit1 lscrit2 tccrit1 tccrit2
#> "3.89" "*" "3.89" "*" "3.89" "*"
#> Total Number of Outliers: 0
#> Automatically Identified Outliers: 0
#>
#> Seasonal Adjustment
#>
#> Identifiable Seasonality: yes
#> Seasonal Peaks: rsd
#> Trading Day Peaks: sa irr
#> Overall Index of Quality of SA
#> (Acceptance Region from 0 to 1)
#> Q: 0.26
#> Number of M statistics outside the limits: 0
#>
#> SA decomposition: multiplicative
#> Seasonal moving average used for the final iteration:
#> 3x3 (Based on the size of the global moving seasonality ratio (msr))
#> Moving average used to estimate the final trend-cycle: 9-term Henderson filter
summary(AirPassengersX12,oldOutput=10)
#> -------------------------- AirPassengers ------------------------------------
#> -----------------------------------------------------------------------------------
#>
#> Time Series
#>
#> Frequency: 12
#> Span: 1st month,1949 to 12th month,1960
#>
#> Model Definition
#>
#> ARIMA Model: (1,1,0)(0,1,1)
#> Model Span: 1st month,1949 to 12th month,1960
#> Transformation: Automatic selection : Log(y)
#> Regression Model: none
#>
#> Outlier Detection
#>
#> Outlier Span: 1st month,1949 to 12th month,1960
#> Critical |t| for outliers:
#> aocrit1 aocrit2 lscrit1 lscrit2 tccrit1 tccrit2
#> "3.89" "*" "3.89" "*" "3.89" "*"
#> Total Number of Outliers: 0
#> Automatically Identified Outliers: 0
#>
#> Seasonal Adjustment
#>
#> Identifiable Seasonality: yes
#> Seasonal Peaks: rsd
#> Trading Day Peaks: sa irr
#> Overall Index of Quality of SA
#> (Acceptance Region from 0 to 1)
#> Q: 0.26
#> Number of M statistics outside the limits: 0
#>
#> SA decomposition: multiplicative
#> Seasonal moving average used for the final iteration:
#> 3x3 (Based on the size of the global moving seasonality ratio (msr))
#> Moving average used to estimate the final trend-cycle: 9-term Henderson filter
#>
#> --------------------------- RUN 1 ----------------------------------------
#>
#> Time Series
#>
#> Frequency: 12
#> Span: 1st month,1949 to 12th month,1960
#>
#> Model Definition
#>
#> ARIMA Model: (0 1 1)(0 1 1) (Automatic Model Choice)
#> Model Span: 1st month,1949 to 12th month,1960
#> Transformation: Automatic selection : Log(y)
#> Regression Model: none
#>
#> Outlier Detection
#>
#> Outlier Span: 1st month,1949 to 12th month,1960
#> Critical |t| for outliers:
#> aocrit1 aocrit2 lscrit1 lscrit2 tccrit1 tccrit2
#> "3.89" "*" "3.89" "*" "3.89" "*"
#> Total Number of Outliers: 0
#> Automatically Identified Outliers: 0
#>
#> Seasonal Adjustment
#>
#> Identifiable Seasonality: yes
#> Seasonal Peaks: rsd
#> Trading Day Peaks: sa irr
#> Overall Index of Quality of SA
#> (Acceptance Region from 0 to 1)
#> Q: 0.26
#> Number of M statistics outside the limits: 0
#>
#> SA decomposition: multiplicative
#> Seasonal moving average used for the final iteration:
#> 3x3 (Based on the size of the global moving seasonality ratio (msr))
#> Moving average used to estimate the final trend-cycle: 9-term Henderson filter